2 1 N ov 2 00 5 Berry Esseen Bounds for Combinatorial Central Limit Theorems and Pattern Occurrences , using Zero and Size Biasing ∗ † Larry Goldstein University of Southern California
نویسنده
چکیده
Berry Esseen type bounds to the normal, based on zeroand size-bias couplings, are derived using Stein’s method. The zero biasing bounds are illustrated with an application to combinatorial central limit theorems where the random permutation has either the uniform distribution or one which is constant over permutations with the same cycle type and having no fixed points. The size biasing bounds are applied to the occurrences of fixed relatively ordered sub-sequences (such as rising sequences) in a random permutation, and to the occurrences of patterns, extreme values, and subgraphs on finite graphs.
منابع مشابه
Berry–esseen Bounds for Combinatorial Central Limit Theorems and Pattern Occurrences, Using Zero and Size Biasing
Berry–Esseen-type bounds to the normal, based on zeroand size-bias couplings, are derived using Stein’s method. The zero biasing bounds are illustrated in an application to combinatorial central limit theorems in which the random permutation has either the uniform distribution or one that is constant over permutations with the same cycle type, with no fixed points. The size biasing bounds are a...
متن کاملBerry Esseen Bounds for Combinatorial Central Limit
Berry Esseen type bounds to the normal, based on zeroand size-bias couplings, are derived using Stein’s method. The zero biasing bounds are illustrated with an application to combinatorial central limit theorems where the random permutation has either the uniform distribution or one which is constant over permutations with the same cycle type and having no fixed points. The size biasing bounds ...
متن کاملZero Biasing and a Discrete Central Limit Theorem by Larry Goldstein
University of Southern California and University of Melbourne We introduce a new family of distributions to approximate P(W ∈A) for A ⊂ {. . . ,−2,−1,0,1,2, . . .} and W a sum of independent integer-valued random variables ξ1, ξ2, . . . , ξn with finite second moments, where, with large probability, W is not concentrated on a lattice of span greater than 1. The well-known Berry–Esseen theorem s...
متن کاملZero Biasing and a Discrete Central Limit Theorem
We introduce a new family of distributions to approximate IP(W ∈ A) for A ⊂ {· · · ,−2,−1, 0, 1, 2, · · · } and W a sum of independent integer-valued random variables ξ1, ξ2, · · · , ξn with finite second moments, where with large probability W is not concentrated on a lattice of span greater than 1. The well-known Berry–Esseen theorem states that for Z a normal random variable with mean IE(W )...
متن کاملA BERRY–ESSEEN BOUND WITH APPLICATIONS TO VERTEX DEGREE COUNTS IN THE ERDŐS–RÉNYI RANDOM GRAPH BY LARRY GOLDSTEIN1 University of Southern California
Applying Stein's method, an inductive technique and size bias coupling yields a Berry–Esseen theorem for normal approximation without the usual restriction that the coupling be bounded. The theorem is applied to counting the number of vertices in the Erd˝ os–Rényi random graph of a given degree. 1. Introduction. We present a new Berry–Esseen theorem for sums Y of dependent variables by combinin...
متن کامل